’r

b 1900

PASCAL USER’S GUIDE

_y

VERSION 2
AUGUST 1977

Department of Computer Science

The Queen’s University of Belfast
Belfast BT7 1NN Northern ireland Telex 74487

F. J. Smith, M.R.LA.,
Professor of Computer Science Tel. 456133 Ext. 3220 /1

22 February 1978

Dear . A w. Alocsi

J

Please find enclosed a magnetic tape containing the
1800 PASCAL system, mark 2 - issue 3. We apologise for the delay in
sending the tape. The associated documentation consists of:

(1) Tape specification

(2) System specification

(3) Users Guide

(u4) An insertion to the Users Guide describing

the source library enhancement.

It should be noted that there are significant operational
differences between this issue and previous issues of mark 2, and of
course mark 1. Please read the system specification carefully. The
tape now includes a George 3/4 macro (developed at the University of
Glasgow) for running PASCAL jobs. This may help in installing the
new system.

Also note that the binary compiler (and binary postmortem
generator) on the tape were generated with checks on. By recompiling
the associated source subfiles with checks off, their size will be
reduced (by approx. 3% for the compiler) and their speed improved
(by about 8% for the compiler).

Yours sincerely,

V/é alllon.. ALl . Al (e 2L
Zﬁ J. WELSH.

EN

MARX 2 - ISSUE 3

PASCAL SYSTEM TAPE : PROGRAM DIST. (34)
This tape originated on an ICL 1906S machine under the GEORGE Y4 operating
system. Its physical characteristics are
either 9 track: (phase encoded, 1600 bpi, odd parity, written on 2505 tape system)
or. 7 track: (NR21,556 bpi, odd parity, written on 1971 tape system).
It was created using the ICL utilities #XKYA and #XPMV. It contains
(1) A se;rch program #DIST generated by #XPMV

(2) Five source subfiles created by #XKYA which are

1

the PASCAL source of the full 1900 i3%1c

(i) COMPILER
» PASCAL compiler

(ii) MONITOR the PLAN source of the run-time support 57279

package used by the full PASCAL system

(iii) POST-GEN - the PASCAL source of the post-mortem Xt
generator
(iv) LIBEDIT - GEORGE 3/4 editor instructions to add 3y 1

the source library enhancement to the
COMPILER source

(v) 'MACRO

a GEORGE 3/4 macro to run PASCAL %1
programs '

(3) A subfile LIBRARY FILE, created by #XPMV, which contains two
binary programs:

(i) #PasQ - the 1900 PASCAL compiler
(ii) #POST - the postmortem generator

The source subfiles may be extracted using #XKYA. The binary programs
may be loaded by directives

e.g. FI #PASQ #DIST
FI #POST #DIST

or any equivalent sequences. How to run the systems is described in separate
documentation.

If any one wishes to amend or extend the systems, the necessary
procedures are discernible from the source listings. However it may be
advisable to consult the authors before doing so.

J. WELSH.

Department of Computer Science
Queen's University
Belfast BT7 1NN,

1900 PASCAL User's Guide.

This document describes the PASCAL programming language as
implemented on ICL 1900 series computers. The language implemented is
essentially that defined by Jensen & Wirth's 'Pascal User Manual and
Report' and this document is intended only as a supplement to that text,
in effect replacing Chapters 13 and 14 thereof.

The Guide consists of three sections. Section 1 defines the
version of PASCAL implemented, Section 2 outlines the facilities
provided by the 1900 PASCAL system, and Section 3 explains how to run
1900 PASCAL programs at a particular computing installation, in this

case the Computer Centre of Queen's University.

The 1900 PASCAL compiler was written at the Queen's University
Belfast by J. Welsh, C. Quinn and K. McShane. The diagnostic facilities
and compiler directives were added at the University of Glasgow by
D.A. Watt and W. Findlay. This Guide is a collation of material written
in Belfast and Glasgow. Any comments or queries on its content should
be directed to the address below.

J. Welsh.

Department of Computer Science
Queen's University
Belfast.

Version 2

August 1977.

1.1

1.2

1.3

Chapter 1.

The 1900 Pascal Language

The dialect of Standard Pascal implemented on ICL 1900 computers is
that defined in [Jensen and Wirth, "PASCAL User Manual and Report"] subject
to the following amendments.

Vocabulggx

Only the capital letters are available in programs or data. Symbols
written underlined in the Report, the word-delimiters, are written in
1900 Standard Pascal without underlining and without any surrounding escape

characters.

The characters { and } are not available, so comment brackets are
written as (* and *) instead. The symbol # is accepted as an alternative

for <> and @ is accepted as an alternative for 4. Blanks, end-of-lines and

" comments are considered to be separators and may be inserted anywhere except

within word-delimiters, identifiers, numbers and the symbols :=, .., <=, >=,

<>, (x, x) ,

Identifiers and numbers

Only the first 8 letters and digits of an identifier are significant.
Identifiers which do not differ in the first 8 characters are considered to
be identical. Word-delimiters are reserved and must not be used as
identifiers. At least one separator must appear between adjacent word-

delimiters, identifiers or numbers.

Integer constants may be written in either decimal or octal notation,

according to the following syntax:

<unsigned integer> ::= <digit sequence>|<octal digit sequence>
<octal digit sequence> ::= <octal digit>{<octal digit>}B
<octal digit> ::= 0]1|2|3|u|s|6]|7 '

Data types

The type INTEGER is given by the definition:-
TYPE INTEGER = -MAXINT .. +MAXINT
where MAXINT=8388607 on the ICL 1900.

The type REAL is defined by the ICL 1900 floating point
representation which allows values in the approximate range *+1.0E+76 with
about 11 significant figures. Arithmetic operations on REAL values imply
rounding.

The type CHAR is defined by the ICL 1900 six-bit intermal character
set. The ordering of the type is thus:-

0 1 2 3 4 5 6 7
8 9 : H < = > ?
¥ ! " # £ % & '
() * + s - . /
@ A B c D E F G
H 1 J K L M N 0
P Q R S T U \ W
X Y y4 C $] + -

SET types may be defined over any base type which is:-
(a) an enumerated type with not more than 48 values, or

(b) a subrange of type INTEGER with a minimum element >=0

and a maximum element <48, or

(c) a subrange of any other ordinal type which does not
include any value beyond the 48th value in the

ordering.
A restriction imposed by the compiler is that the empty set (i.e. [])

cannot be given as an actual parameter in a call of a formal procedure.

In RECORD types with variant parts explicit tagfields must be
specified. (This is in accordance with Wirth's "second thoughts" on the
subject.)

FILES cannot be assigned, cannot be passed as value parameters,

and cannot occur as components of any other structured type.

An additional predefined type ALFA is available, with the definition:-

TYPE ALFA = PACKED ARRAY [1..8] OF CHAR

—

1.4 The standard procedure WRITE

1.5

If no minimum field length parameter is specified, the following

default values are assumed:-

Type Default

INTEGER 8

REAL 16 (and the exponent is always
given in the form Etdd)

BOOLEAN 5

CHAR 1l

a string the length of the string

The end of each line in a textfile f must be explicitly indicated
by WRITELN(f), where WRITELN(OUTPUT) may be expressed simply as WRITELN.
If a textfile is sent to a lineprinter, no line may contain more than

120 characters.

The program heading

The program heading serves to identify the FILE variables through

which the program communicates with its environment. It has the form:-
<program heading> ::= PROGRAM <identifier> (<permanent files>) ;

<permanent files> ::= <identifier> {, <identifier> }
The program identifier must be at least four characters long.

Each permanent file identifier must also be declared as a FILE
variable in the main program block. However the standard FILEs INPUT and
OUTPUT must not be declared, but do have to be listed in the program
heading if they are used. For those programs which use only the standard
FILEs:-

(a) a reduced form of program heading may be used, viz.:-
PROGRAM <identifier> ;
which is eguivalent to:-
PROGRAM <identifier> (INPUT, OUTPUT) ;

(b) the program heading may be omitted entirely, in which

case the compiler assumes a heading of the form:-

PROGRAM PASCAL (INPUT, OUTPUT) ;

1-3

1.6 FILE variables and external files

Each FILE variable is implemented using an appropriate 1/0 device, as

follows:-

(a) the standard permanent file INPUT is implemented as a

card reader with unit number zero (*CRO)

(b) the standard permanent file OUTPUT is implemented as a

line printer with unit number zero (*LPO)

(c) all other permanent files are implemented as direct
access files with unit numbers O, 1, 2 ... allocated
in the order of their occurrence in the program heading.
The files must already have been created with filenames
which are the first 8 characters of the corresponding
file variable identifiers. They will be opened on
entry to the program in a mode which permits reading and
writing.

(d) all non-permanent FILE variables are implemented as
direct-access scratch files, created on entry to the

block in which they are declared and erased on exit.

For files represented on read/write storage media (direct access,
magnetic tape) the procedure RESET must be applied before reading takes place
and REWRITE before writing takes place. For files represented on basic
peripheral devices (card readers, line printers) these procedures need not
be called.

The format used in recording files on magnetic tape and direct-access
media is peculiar to the Pascal system. It is not designed to be compatible
with other 1900 Series software. Textfiles which are to be processed by
non-Pascal programs (such as an Editor) must therefore be manipulated as

card reader and line printer files.

An input card reader file is assumed to be terminated by the
occurrence of a line with asterisks in columns 1 to 4, in accordance with

the ICL convention.

Note that the external file is opened on entry to the block in which
the file variable is declared. Thus an external file must be provided for
each file variable, regardless of whether the program actually performs any

explicit data transfers upon it or not. If a file variable is not to be

1.7

accessed in a run, a suitable empty external file may be associated with it

to satisfy this rule.

Details of how the default device types, unit numbers and opening modes
may be changed and of how actual files may be associated with them will be

found in chapter 3.

Predefined functions and procedures

The predefined functions and procedures cannot be passed as actual

parameters.

The following additional predefined routines are available ;

Procedures

DATE(a) assigns to the ALFA variable a the current date,
expressed in the form dd/mm/yy.

TIME(a) assigns to the ALFA variable a the current time of day,
expressed in the fiérm hh/mm/ss.

MILL(i) assigns to the INTEGER variable i the CPU (mill) time
used by the program so far, expressed in milliseconds. Since this time
may include time spent before the execution of the main program proper
commences, accurate program timings can be made only by taking the
difference of successive values returned by MILL. The value given to i

will be significant only if the machine is fitted with a mill-timer.

HALT(x) terminates execution of the program, displaying the string
value x. Permanent files attached to the program are closed in the

process.

Functions

CARD(s) yields the cardinality (i.e. the number of members) of
the SET value s.

The correct execution of programs which include functions with side-

effects is not guaranteed in 1900 Pascal.

1.8 Initialising global variables

A non-standard facility enables the value of global variables
(i.e. those declared in the outermost block) to be initialised at compile-
time. In some programs this may save writing many assignment statements
which are obeyed only once. The:initialisation takes the form of a value
part which may immediately follow the variable declaration part of the
program block. This value part has the form:-

<value part> ::= <empty>

| VALUE <value specification>{ ;<value spécification>};
<value specification> ::= <identifier> = <initial value>
<initial value> ::= <constant>
| (<constant>{,<constant>})
Note the following:-
(a) The symbol VALUE is a reserved word.

(b) Not all variables declared need be initialised, but those
which are must appear in the value part in the same order

as they appear in their declarations.

(c) The initial value specified must be identical in type
with the variable being initialised.

(d) A constant list may be used to initialise array or record
variables, each component value being specified in the
order of its occurrence in the structured value.
Components of multi-dimensional arrays are ordered in a

row-major fashion.

(e) A packed array of characters may be initialised with a

string. Other packed types may not be initialised.

1-6

1.9 Imbedding 1900 machine code instructions in PASCAL

Although PASCAL provides a powerful and flexible means of expressing
a wide range of programming operations it is sometimes necessary or
convenient to resort to machine level e.g. to control some peripheral
device directly. For this reason the 1900 PASCAL compiler permits the
imbedding of machine code instructions in PASCAL programs, by means of a

built-in procedure ICL and a built-in function ADDRESSOF described below.

From a PASCAL viewpoint it is convenient first to classify 1900
machine instructions as follows

(i) branch instructions involving 3 fields in the general form
F X N
where N is a program label or address, e.g.
BZE 5 Lu

(ii) storage addressing instructions involving 3 or 4 fields in

the general form

F X N(M)
where N is the name of a storage location and M may be
omitted implying no modification e.g.

ADX 5 JOHN

STO 6 FRED(2)

~~
[
e
e
~

absolute instructions involving 3 or 4 fields in the general

form
F X N(M)
where N is an absolute numeric value and again M may be

omitted, e.g.

LDN 4 100
ADX 6 5
LDCT 2 0(2)

1.9.1 The built-in procedure ICL

The generation of instructions as classified above within a
1900 PASCAL program is provided by a built-in procedure ICL which accepts
either 3 or 4 parameters in the general form
IcL (F, X, N) ;
or ICL (F, X, N, M) ;

The effect of each appearance of ICL in the source PASCAL program is
to generate in the corresponding object program the machine instruction
defined by its particular parameters F,X,N,M. These must obey the following

rules:

(1) The function parameter F

In all cases F must be an integer constant which is the function code
of the required machine instruction. Since PASCAL allows octal constants

this value can be copied directly from the ICL literature, e.g.
ICL (050B,) 3
Alternatively the user may first define the PLAN instruction
mnemonics as PASCAL symbolic constants e.g.
CONST LDX = OOOB ; BZE = O50B ;
and the use of these mnemonics in his calls of ICL e.g.

ICL (BZE,) 3

(2) The accumulator parameter X

In all cases X must be an integer constant in the range O - 7,
e.g.
ICL (BZE, 5, ...) 3
For those instructions in which the accumulator field is not significant,

e.g. STOZ, X must be specified as zero e.g.

ICL (STOZ, O,) 3

(3) The operand parameters N,M

The form which the N,M parameters may take depends on the class of

instruction being generated, as follows

(i) for branch instructions N must be a PASCAL label defined in the

same block, and the M parameter must not appear, e.g.
ICL (BZE,5,3) ;
ICL (ADX,u4,6,2) ;
3:ICL (SBX,7,u4) ;

Branches to absolute locations or to any point other than a

labelled PASCAL statement are not permitted.

(ii) for storage-addressing instructions N must be a PASCAL program

variable which is

(a) simple, involving no subscripting ([]), field selection (.),
or indirection (4)

and (b) either local, i.e., declared in the current block, or
global, i.e., declared in the main program, and the M
parameter must not appear, e.g.

ICL (LDX, 6, I) ;
where I is a local or global variable.

A global variable addressed by procedure ICL must also be in
Lower Data, i.e. have an address less than 4096. A local

variable addressed by procedure ICL must be in the first 4096
words of local storage for the block in which it is declared.

In general addressing PASCAL variables, even those obeying
rules (a) and (b) above, may involve modification and the
PASCAL compiler will automatically insert the appropriate
modifier field in the generated instruction. The user must
neither attempt to specify an additional modification by
supplying an M parameter, nor make any assumption about the

modification used.

(iii) for absolute instructions N must be an integer constant in

the range O - 4095 and M if it appears must be an integer

constant in the range O - 3.

Since machine code instructions generated by the ICL procedure are in
general interspersed among instructions generated from source PASCAL
statements by the PASCAL compiler it is necessary to impose certain
additional constraints on the use of ICL to ensure that the two types of

instruction do not interfere with one another.

(i) The contents of accumulator X1 are significant throughout
machine code generated by the PASCAL compiler. The

procedure ICL must never be used to generate a machine

code instruction which, directly or indirectly, may alter

the contents of X1.

(1i) Where the execution of a machine code sequence generated
from a source PASCAL statement or statements occurs

between the execution of two ICL generated instructionms,

1-9

1.9.2

no assumptions may be made about the contents of the
accumulators when the second ICL-generated instruction

is reached. In general the execution of code generated

from a source PASCAL statement may alter the contents of

any or all of the accumulators.

The built-in function ADDRESSOF.

The restrictions (a), (b) imposed on the N field of storage addressing
instructions generated by the built-in procedure ICL make it impossible to
generate machine code instructions addressing certain types of variable by
this procedure alone. To enable the addressing of these variables
1900 PASCAL provides a built-in function ADDRESSOF which, given any valid
variable as parameter, produces as result an integer which is the absolute
address of the current instance of that variable. This allows the indirect

addressing of e.g. an array element A[J] as follows:

I :z ADDRESSOF(ALJ]) ;
ICL (LDX, 2 I) ;

Execution of this code leaves the address of A[J] in X2 which might

then be used as a modifier in accessing A[J] itself.

1-10

2.1

2.1.1

Chapter 2.

The 1900 Pascal compiler

The exact means of compiling, loading and running a 1900 Standard
Pascal program depend on the particular computing installation and are
defined in chapter 3. The present chapter describes the behaviour and output
of the system in compiling and executing programs, and should be generally
applicable.

nggilation

Compilation options are available to define the user's requirements in
respect of source listing (see 2.1.1), run-time checking (2.1.2), addressing
modes (2.1.3) and diagnostic facilities (2.4). These options are exercised
by means of compiler directives (see section 2.5), or otherwise as provided

by the installation (chapter 3).

The source program listing

The source program listing is a printed record of the program that was

compiled. It consists of:-

(a) A heading showing the version of the compiler used, and

the date and time of compilation.

(b) A line-by-line print-out of the "source program including

line numbers and object-code addresses.

Line numbers are successive integers starting from zero;
they are thus compatible with the line-numbering
conventions used elsewhere by 1900 software (e.g. the
Editors). '

The object-code address is an integer giving the location
within the object program of the code generated from

that line of source program. Where no such address
exists, none is printed. These addresses are used in
interpreting the error messages produced by the run-time

monitor and the diagnostic system.

Errors detected during compilation are indicated by

error message lines printed immediately after the

2.1.2

2.1'3

source line in question. The exact position within
this line to which the error message relates is shown
by an upward-pointing arrow. The nature of the error
is specified by numeric codes printed immediately after
the arrow. These codes refer to the table of error
messages given in section 2.3. Note, however, that

the actual mistake may be distant from the point where

the compiler detects the error.

(c¢) The listing is completed by a trailing summary
indicating the success or otherwise of the compilation,
the number of compilation errors reported, and
descriptions of the checking, address-mode, and

diagnostic options which have been selected.

There are compilation options making it possible to suppress the 4
source listing, or to list specified parts of the program. However, lines
containing errors are always printed, along with their corresponding error

messages; as are the heading and the trailing summary.

The checking option

The compiler will incorporate into the object code, if requested,
instructions to check against certain types of error happening during

execution. These errors include:-

(a) The occurrence of overflow during integer or real

arithmetic.

(b) Array subscripts, case indices, or values assigned
to subrange variables being outside the range

permitted.

These checks will in general produce some increase in the size and
execution time of the object program, but their incorporation is nevertheless
strongly recommended. Since the compiler exploits the information provided
by subrange declarations to minimise the checking code produced, a rigorous

use of subrange types may decrease the checking overhead substantially.

The address-mode options

The object program operates in a mode that depends on the range of
addresses spanned by its instructions and working storage. Four cases can

be distinguished:-

2-2

(a) If the complete storage requirement for the program,
including both instructions and data, is less than
32K then code which operates in Compact Data Mode (CDM)

may be used.

(b) If the data storage used during execution extends
beyond 32K then Extended Data Mode (EDM) must be used.

(¢) 1If the object program instructions lie entirely
within 32K then Direct Branch Mode (DBM) may be used.

(d) If the instructions extend beyond 32K then Extended
Branch Mode (EBM) must be used.

The modes required must be determined at the start of the compilation and

must be the same for the whole of the program.

Execution

The only output from the execution of a 1900 Pascal program, apart from
that written by the program itself, takes the form of termination messages.
These will normally be made available to the user, in some form, by the

operating system.

A 1900 Pascal program may terminate in one of four ways:-

(a) By reaching the final END of the main program block;

in this case the final message is "OK".

(b) By performing a call on the HALT procedure; in this
case the final message is that specified in the call of
HALT. To avoid confusion with cases (a) and (c) this
message should not begin with "OK" or "ERROR".

(c) By the detection of an execution error; in this case
the final message takes the form

ERROR <error code> AT <object address>

The numeric error code again refers to the table given
in section 2.3. The position within the source
program at which the error occurred can be found by
locating the given object address in the source

program listing.

(d) By failing in a way which causes the Pascal run-time
monitor to lose control. Such errors can usually be
prevented by including run-time checks among the

selected compilation optionms.

2-3

2.3

2.3.1

In cases (c¢) and (d) unfilled buffers will not be output to files open for

writing. Consequently such files may be truncated and it may not be possible

to re-read them satisfactorily.-

After termination of the object program the 1900 Pascal "postmortem"

system may be run to obtain diagnostic information (see section 2.4).

Error codes

Errors detected at compilation time only

e o oo

WoOJO0O!nFEFWNH

50:
51:
52:
53:
Sy
55:
56:
57:
58:
59:

101:
102:
103:
104:
105:
106:
107:
108:
109:

error in simple type
symbol expected was an identifier

symbol expected was ")"
symbol expected was ":"
unexpected symbol

error in parameter list
symbol expected was "OF"
symbol expected was "("

error in type

symbol expected was "["

symbol expected was "]1"

symbol expected was "END"

symbol expected was ";"

symbol expected was an integer constant
symbol expected was "="

symbol expected was "BEGIN"

error in declaration part

error in field-list

symbol expected was ","
misordered declarations ?
only global varidbles may be initialised (non-Standard)

error in constant

symbol expected was ":="

symbol expected was '"THEN"

symbol expected was "UNTIL"

symbol expected was "DO"

symbol expected was "TO" or "DOWNTO"
symbol expected was "IF"

error in factor
error in variable

identifier declared twice in the same block
lower bound of subrange exceeds upper bound
identifier is not of appropriate class
identifier not declared
a sign is not allowed here
symbol expected was a number
incompatible subrange types
a file is not allowed here
the type here must not be REAL

2-4

110:
111:
112:
113:
114:
115:
116:
117:
118:
119:

120:
121:
122:
123:
124:
125:
126:
127:
128:
129:

130:
131:
132:
133:
134:
135:
136:
137:
138:
139:

140:
141:
142:
143:
144
145:
146:
147:
1u8:
149:

150:
151:
152:
153:
154:
155:
156:
157:
158:
159:

a tagfield type must be ordinal
incompatible with tagfield type

an index type must not be REAL

an index type must be ordinal

a base type must not be REAL

a base type must be ordinal

error in type of standard procedure
unsatisfied forward reference

forward-declared: repetition of parameter list not allowed

the type of a function must be ordinal, REAL or pointer
file value parameters are not allowed

forward-declared: repetition of result type not allowed
missing result type in function declaration
fixed-point format is allowed for REAL output only
error in type of standard function parameter

number of parameters does not agree with declaration

result type of formal function conflicts with declaration
types of operands conflict

expression is not of SET type

equality tests only are allowed for this type
strict inclusion is not allowed (unfortunately)
file comparison is not allowed '
illegal type of operand(s)

type of operand must be '"BOOLEAN"

type of set element must be ordinal

types of set elements are not compatible

type of variable is not ARRAY etc

subscript type is not compatible with declaration

type of variable is not RECORD etc

type of this variable must be pointer or FILE etc
illegal parameter substitution

illegal type of FOR-loop controlled variable
illegal type of expression

type conflict

assignment of files is not allowed

CASE label type incompatible with CASE selector
subrange bounds must be ordinal

subscript type must not be "INTEGER"

assignment to a standard function not allowed
assignment to a formal function is not allowed
no such field in this record

an actual VAR parameter must be a variable
a FOR-loop controlled variable must not be formal
multi-defined CASE label

declaration of corresponding variant is missing
REAL or string tagfields are not allowed

2-5

160:
161:
162:
163:
164:
165:
166:
167:
168:
169:

170:
171:
172:
173:
174
175:
176:
177:
178:
179:

200:
201:
202:
203:
204 ;
205:
206:

250:
251:
252:
253:
254 ;
255:
256:
257:
258:
259:

260:
261:
262:

270:

296:
297:
298:
299:

multiple forward declaration
parameter size must be constant

standard procedure/function cannot be formal
multiple definition of label

multiple declaration of label

undeclared label

undefined label in block just ended

error in base set

formal procedure/function must have value parameters only

undeclared external file

a packed component cannot be passed as a VAR parameter
forward procedure/function not found in block just ended
subrange bounds cannot be REAL

label not defined at correct level

undeclared permanent file

no INPUT or OUTPUT file has been specified

error in REAL constant : digit expected

a string constant must not cross line boundary
INTEGER constant exceeds range

8 or 9 in octal number

strings of length zero are not allowed

too many nested scopes (blocks/WITH statements)

error in initialising global variables (non-Standard)

too many forward references to procedure/function entries
procedure too long

too many errors on this source line

expression too complicated
expression or FOR/WITH nesting too complicated
this should not occur : report compiler failure }

code generated greater than 32K

unimplemented compiler directive : ignored
misplaced compiler directive : ignored
invalid compiler directive : ignored

2-6

2.3.2 Errors detected at compilation time and at run time

300

301: no case provided for this value

302: value outside expected range

303: overflow or division by zero in INTEGER arithmetic
304: overflow or division by zero in REAL arithmetic

2.3.3 Errors detected at run time only

305: error in numeric input data
306: error in output format

307: insufficient storage available
308:

309:

310: .

311: all logical-device unit numbers have been allocated

312: failure to allot basic peripheral (CR/LP)

313: failure to open magnetic peripheral (MT/DA)

314: illegal attempt to write

515: 1run off end of tape

316: cannot extend scratch file/run off end of permanent file
317: 1illegal attempt to read

318: tape has non-Pascal format

319: physical end of DA file

320: illegal attempt to RESET a write-only file
321:

322: illegal attempt to REWRITE a read-only file
323:

324: tape format error (incorrect sentinel)

325: physical end of tape

326: reading after end-of-file

327: writing before end-of-file

328: printing off end of a line

329: file specification cannot be read (on opening)
330: file elements too large (>1023 words)

2.3.4 Errors detected at postmortem system run time only

401: end of file

402: too much output

403: time up

404: wunallocated device

405: illegal instruction (x** see consultant **)

2.4 Diagnostic facilities

The Pascal diagnostic system supports source-language dumps, profiles,
retrospective traces, and forward traces. The programmer is free to choose

any combination of these.

After execution of the program, a termination message is printed which
includes the CPU time used by the program, the maximum extents of the stack
and heap (available only if a dump was requested), and, if the program
failed during execution, a brief message describing the failure and its

location within the program.

Following the termination message, the diagnostic information requested
by the programmer is printed. Details of the diagnostic output are given in

the following sectioms.

2.4,1 The postmortem dump

The postmortem dump, which is produced only if the program failed
during execution, consists of a display of all blocks still active at the

moment of termination.

For each block there is a heading containing the block's identifier
and (where appropriate) the address of the point of call. Under this heading
are displayed the values of all local variables and value parameters. As far
as possible these are printed in source-language format, augmented by suitable

notation for arrays and records.

Integer, real and character values are printed in their usual format.
For types defined by enumeration of their values, including the Boolean type,
each value is printed as an identifier. Any scalar value which is out of

range is assumed to be undefined and is printed as "?"
A set value is printed in source-language format.

An array value is printed as a list of its elements enclosed in
parentheses ("(", ")"). The elements are printed on separate lines if they
are themselves structured, otherwise they are printed all on one line. At
most 8 elements are printed, but these always include the first few elements

and the last element.

As a special case, a packed-array-of-character value is always printed,

in full, as a string.

A record value is printed as a list of its fields enclosed in angle
brackets ("<", ">"), Any structured field is printed on a separate line, but
consecutive unstructured fields are printed on a single line. Tag-fields are
marked "VARIANT". Fields of variant-parts are printed, in number and format,

as implied by the value(s) of the corresponding tag-field(s).

2-8

2.4.2

A pointer value is printed either as "NIL" or as an object-program
address preceded by "@". (These are the only values not printed in source-
language format. The representation chosen, however, allows pointer values

to be compared for equality or inequality.) Data stored on the heap is not
displayed.

In the case of a file variable, its current mode (reading or writing)
and end-of-file status are indicated, and its current component is printed
if it is defined.

The Erofile

The profile is an edited, automatically formatted, listing of the

‘'source program which displays the frequency of execution of each statement

of the program.

The listing includes block headings and block bodies, but declarations
and comments are not included. Indentation is used to emphasise the block
structure and control structure of the program, and also to facilitate the

interpretation of the profile, as described below.

To read off the frequency of execution of any statement, we locate
the beginning of the statement in the profile listing. If an asterisk ("x")
is present on the same line, to the left of the listing, then the desired
frequency will be found to the left of the asterisk. Otherwise, the line
will contain one or more upward-arrows ('4"); we select the rightmost arrowv,
and follow the line of arrows vertically upwards until an asterisk is

encountered; again, the desired frequency will be found to the left of the

asterisk.

If the program terminated in failure, the profile must be interpreted
with some caution. If the upward line of arrows being followed passes the
failure point, or a procedure or function call leading to that failure
point, then the frequency as obtained above will be one too high (possibly
more, if the procedure or function call is recursive). As a warning, the

location of the failure is marked prominently on the profile.

In addition to statements, the frequencies of execution of WHILE-
expressions and UNTIL-clauses can be read independently off the profile.
In the case of a WHILE-statement, for example, it is possible to read off,
independently, the frequencies of execution of the WHILE-expression, of the

repeated statement, and of the WHILE-statement as a whole.

2-9

2.“.3

The retrospective trace

The retrospective trace is a list of the last few "flow-units"
executed up to the moment of termination of the program. (A "flow-unit" is
a small piece of program, such as (a) a simple statement, or (b) an IF-,
CASE-, FOR-, WHILE-, UNTIL-, or WITH-clause, or (c) simply "BEGIN","WHILE",
or "REPEAT", indicating entry to a compound-, WHILE-, or REPEAT-statement.)

Each traced flow-unit is displayed in source-language form,
accompanied by its object-program address and by a count N, indicating

that this was the N-th execution of this particular flow-unit.

The number of flow-units in the retrospective trace is given by a
run-time parameter RETROMAX, whose default value is 50; this value may be
altered by means of a compiler directive or by suitable operating system

commands before a run.

The forward trace

The forward trace is a list of all flow-units executed, with the
exception of those executed while tracing was (temporarily) suspended.
Each flow-unit is displayed in source-language form, and is accompanied by
its address and count, as in the retrospective trace. Points where the

trace was suspended are indicated.

The N-th execution of a flow-unit is traced only if
TRACEMIN<=N<=TRACEMAX, where TRACEMIN and TRACEMAX are run-time parameters,
with default values 1 and 2 respectively. So, when a flow-unit is executed
whose count N does not satisfy this criterion, tracing is suspended (if
not already suspended). Tracing is resumed when a flow-unit is executed
whose count N does satisfy this criterion. The values of TRACEMIN and
TRACEMAX may be specified by means of compiler directives, or by suitable

operating system commands before each run.

By means of compiler directives, it is possible to restrict forward
tracing to selected parts of the program only. Selective tracing is much
more efficient than indiscriminate tracing. More importantly, however,
the program can be viewed as a series of levels of abstraction, with each
level embodied in a set of procedures; if only procedures in the higher
level(s) are traced, no trace output at all will be obtained from the
bodies of procedures in the lower level(s), which is nicely consistent with
the view that the lower-level procedures merely implement the primitive

operations of the higher level(s).

2-10

2.5

2.5.1

Compiler directives

Compiler directives appear within the source text as single lines
distinguished by "%" in character position 1. Such lines are not considered
to be part of the source program, in this respect behaving like comments.

The same lexical conventions apply in directives as in Pascal texts. Any
directives which are syntactically incorrect, or which are misplaced, will
have no effect. A directive line may contain additional material to the
right of the directive itself and clearly separated from it (e.g. by blanks).

This will be treated as commentary.

Directives fall into three groups: those concerned with the handling
of the source text, those concerned with the diagnostic facilities and
those concerned with the kind of object code to be produced. In each group
some directives (the initial directives) may appear only at the start of

the source text, before the program proper. Others may appear at any point.

The environment in which the compiler is run may provide facilities,
equivalent to certain directives, which allow options to be expressed

without modification of the source text (see chapter 3).

Source-text handling directives

$LISTING = { TRUE | FALSE }
{ requests | suppresses } a source listing. The default is TRUE.
This is an initial directive and must appear at the head of the

source program (if needed).

$LISTING { ON | OFF }
may be used to restrict source listing to selected parts of the
program, provided a source listing has been requested. Source
text between any occurrence of $LISTING OFF and the next
occurrence of 3LISTING ON is not listed.

Regardless of any listing directives, a source line which is found to

contain errors is always printed (together with the error indications).

%MARGIN = <integer>
specifies the number of characters examined by the compiler on

each subsequent source record. The default is 80.

2-11

2.5.2 Diagnostic directives

$DUMP = { TRUE | FALSE }

{ requests | suppresses } a postmortem dump. The default is TRUE.

$PROFILE = { TRUE | FALSE }

{ requests | suppresses } an execution profile. The default is TRUE.

$RETRO = { TRUE | FALSE }

{ requests | suppresses } a retrospective trace. The default is FALSE.

$TRACE = { TRUE | FALSE }

{ requests | suppresses } a forward trace. The default is FALSE.
(The four directives above are all initial directives.)

$TRACE { ON | OFF }
may be used to restrict forward tracing to selected parts of the
program, provided forward tracing has been requested. Any part of
the program which lies between an occurrence of %TRACE OFF and

a subsequent occurrence of %$TRACE ON will not be traced.

%$RETROMAX = <integer>

specifies the number of flow units to appear in the retrospective
trace. The default is 50.

$TRACEMIN = <integer>
$TRACEMAX = <integer>

specify the cutoff counts for forward tracing: the Nth execution
of a flow-unit will be traced only if:-
TRACEMIN <= N <= TRACEMAX

The defaults are 1 and 2 respectively.

2.5.3 Object code directives

$CHECKS = { TRUE | FALSE }
{ requests | suppresses } the inclusion of object code to perform

run-time checking for range and overflow errors. The default is TRUE.

%CDM = { TRUE | FALSE }
{ requests | suppresses } the generation of code to run in CDM
(Compact Data Mode) which limits the total program size to 32K
words or less. The default is FALSE.

2-12

NG

$EBM = { TRUE | FALSE }
{ requests | suppresses } the generation of code to run in EBM
(Extended Branch Mode) which must be used if the program

instructions exceed 32K words. The default is FALSE.

(The three directives above are initial directives).

Examgle

A program P is required to produce a dump if it fails, but no profile
or retrospective trace. Forward tracing is required for a procedure Q alone,
the cutoff counts being 1 and 6.

%PROFILE = FALSE
$TRACE = TRUE
$TRACEMAX = 6
$%TRACE OFF
PROGRAM P;
PROCEDURE Q;
$TRACE ON
BEGIN (» Q %)
END (x Q*) ;
$TRACE OFF
BEGIN (x P x)

END .

2-13

2.6

2.6.1

The source library mechanism

A 1900 Pascal enhancement is available which enables compilers running
under George 3 or Y4 operating systems to incorporate procedures or functions
from a source library during compilation. The procedure or functicns are
held as normal text in file store files, either within the user's own file
area (a private library) or in a system defined area which represents a
public library. The library may thus be created and maintained using the
normal text filing and editing facilities of the George environment.

Retrieving a library procedure or function

To request the incorporation of a library procedure or function during
compilation the user includes a procedure or function retrieval command at
the appropriate point in a procedure or function declaration part of his

program. The syntax of a procedure or function declaration is extended as
follows

<procedure or function declaration> ::=

<procedure declaration> | <function declaration> | <retrieval command>

<retrieval command> ::=
PROCEDURE <identifier> <retrieval specification> |

FUNCTION <identifier> <retrieval specification>

The retrieval specification determines the file from which the
procedure or function is to be retrieved, whether listing is to continue
during compilation of the procedure, and any adjustment of the non-local

identifier scope necessary for its proper compilation.

<retrieval specification> ::= <library file specification>
<listing specification>

<interface scope specification>

The library file specification takes the following form

<library file specification> ::= <filename specification>IN<area specification>
<filename specification> ::= <empty> | = <identifier>

<area specification> ::= LIBRARY | PRIVATE LIBRARY

o Rk

If no filename specification is given the required file is assumed to
have the same name as the procedure identifier specified by the retrieval
command, otherwise it is the identifier following = . Note that since 1900
Pascal identifiers are limited to 8 significant characters the names used for
library filestore files must alsc be limited to 8 characters or less, in the

form of a valid Pascal identifier.

If PRIVATE appears in the area specification the file specified is
sought in the user's own file store area, otherwise it is sought in a system-
designated public area.

The listing specification takes the form

<listing specification> ::= <empty> | , LIST

If , LIST is present listing continues during compilation of the
retrieved library procedure but with line numbers restarting from zero, to
indicate the source line position within the library file. (When compilation
of the normal program text following the retrieval command is resumed, the
previous sequence of line numbers is also resumed.) If the listing
specification is‘empty listing is suppressed during compilation of the library
procedure.

The meaning of a procedure or function often depends on identifiers
denoting types or constants which are assumed to be non-local to the procedure
or function block. It is often inconvenient,or impossible, to ensure that the
required identifiers are defined in the scope in which a procedure or function
retrieval command occurs. Instead the user may define such identifiers in an
interface scope specification within the retrieval command itself. Identifiers

defined in this way are available as non-locals during the compilation of the

retrieved procedure or function, but have no effect on the scope in which the

retrieval command occurs.

<interface scope specification> ::

WITH <interface constants> |
WITH <interface types> I

WITH <interface constants> ; <interface types>

<interface constants> ::= CONST <constant definition>
{ ; <constant definition> }
<interface types> ::= TYPE <type definition>
{ ; <type definition> }

2.6.2

2.6.3

Examples of retrieval commands:

PROCEDURE SORT IN LIBRARY ;
PROCEDURE SORT = MYSORT IN PRIVATE LIBRARY, LIST ;

PROCEDURE SORT IN LIBRARY
WITH CONST N = 100 ;

PROCEDURE SORT IN LIBRARY
WITH CONST N = 100 ;
TYPE TABLE = ARRAY [1..N1 OF REAL ;
ELEMENT = REAL ;

Storing library procedures and functions

The contents of the filestore file retrieved by a retrieval command
must be a 1900 Pascal procedure ér function declaration terminated by a
semi-colon in the usual way. The identifier appearing in the procedure or
function heading is irrelevant since the procedure or function compiled will
be identified bf the name given in the retrieval commgnd. To avoid confusion
it is recommended that the name appearing in the filed procedure or function
heading should coincide with the filename by which it is retrieved. A
recursive'procedure or function must alﬁays be retrieved with the name by

which it recursively calls itself.

Library procedures and functions may contain retrieval commands for
other library procedures or functions. In general retrievals may be nested

to any depth, provided a recursive retrieval cycle is not set up.

Generalised procedures and functions

The fact that the meaning of a procedure or function depends on the
non-local type and constant identifiers used within it enables quite general
procedures and functions to be stored in source libraries. The effect of
the procedure in any particular compilation will be determined by the
definition given to these identifiers in the scope in which the retrieval
command occurs, or by the retrieval command itself. To facilitate the
programming of such general procedures and functions one further extension
is made to 1900 Pascal by the source library enhancement. The minimum and
maximum values allowed by a simple type T may be denoted in an expression

as T.MIN and T.MAX respectively. The syntax of expression is thus extended

as follows

<unsigned constant> ::= <unsigned number> | <string> l

<constant identifier> | <type limit> | NIL
<type limit> ::= <type identifier>.MIN | <type identifier>.MAX

The type denoted by the type identifier may be any simple type other
than REAL.

Error Codes

281: File not found

282: Error in retrieval specification
283: Type here must not be real

284: Symbol expected was "MIN" or '"MAX"

285: Symbol expected was "."

3.1

Chapter 3.

Using 1900 Pascal under GEORGE 3/4

The PASCAL command

The PASCAL command is a GEORGE macro which controls the compilation and
execution of 1900 Standard Pascal programs. A variety of parameters can be
supplied, but all of them are optional and have simple defaults. Each
parameter is identified by a keyword so they can appear in any order.
Parameters are separated by commas, leading and trailing spaces being ignored.

All workfiles created in the macro are erased before it exits.

TEXT=<text>
The program text is compiled from file <text>, or from the
job deck by default. Several parameters of this form may be
given, in which case the source text is read from each of

the files named, in turn from left to right.

LIST=<listing>
The compilation listing is sent to the file <listing>, or to
a workfile by default. The listing is printed automatically
if a workfile is used, otherwise the user must make his own

arrangements to print it.

OPTIONS=(<01>, ... ,<On>) or OPTION=(<01>)
The option(s) <0i> are used to over-ride the compiler's default

settings at the start of the compilation. See section 3.3.

NORUN)
If this parameter is present the object program is not

executed.

SAVE=<save>
The object program is saved in the file <save>, or not saved
by default.

TIME=<time>
The object program is given a CPU time limit (for this run only)
of <time>, or 10SECS by default.

3-1

RUNOPTIONS=(<01>, ... , <On>) or RUNOPTION=(<01l>)
The option(s) <0i> are used to over-ride (for this run only)
the trace limits gset when the program was compiled. See
section 3.3.

DUMP=(<area>)
Areas <area> of the object program are dumped to the monitoring
file (see section 3.6), by default nothing is dumped. This
dump takes place after the execution of the object program,

so the parameter has no effect if NORUN is also specified.

PREDUMP=(<area>)
This parameter acts like DUMP, but is obeyed before the

execution of the program. Hence it is unaffected by NORUN.

INPUT=<input>
The data comprising standard file "INPUT" is taken from
GEORGE file <input>, or from the job deck by default.
Several parameters of this form may be given, in which case
the data is read from each of the files named, in turn from
left to right.

OUTPUT=<output>
The data comprising standard file "OUTPUT" is sent to the
GEORGE file <output>, or to a workfile by default. The file
is printed automatically if a workfile is used, otherwise

the user must make his own arrangements to print it.

FILES=(<F1>, ... ,<Fn>) or FILE=(<F1>)
A parameter of this form is needed if any permanent FILE

variables are declared. See section 3.4 for details.

DEVICES=(<Dd1>, ... , <Ddn>) or DEVICE=(<Dd1l>)
A parameter of this form is used to change (for this run only)
the devices associated with some or all of the permanent FILE

variables. See section 3.4 for details.

BINARY=<binary>
The binary program in file <binary> is loaded and run. It
must be a Pascal object program produced by the SAVE parameter
in another compilation. If the BINARY parameter is present
all parameters to do with compiling a source text are ignored.
Any parameters relating to the object program may be used

along with BINARY.

3-2

TOKEN=<token> or TABLE=<table>
These parameters are used in conjunction with the source-

language diagnostics. See section 3.5 for more details.

CORE=<core>
The object program is allowed to use a maximum (for this run

only) of <core> words of store, or 49152 by default.

FAIL=<n>
If the compilation fails for any reason and this parameter
is present the PASCAL macro performs a jump to the JCL
label <n>FAIL. This allows subsequent commands to be

conditional on the outcome of the compilation.

TRACE=(<level>)
The JCL tracing level is set to <level> within the PASCAL
macro. The default level is "FULLBUT, COMMANDS, COMMENT".

The following parameters are chiefly of value in maintaining the Pascal

system itself, but may occasionally find some more general applications.

COMPILER=<comf> or MONITOR=<monf> or POSTMORTEM=<pmdf>
The file named in the parameter is loaded and run during the
appropriate phase of the macro, in place of the usual

component.

OBJECT=<ocf>
The object code generated by the compiler is copied to the
file <ocf>. This cannot be run as a complete program until
it is bound to a run-time monitor, e.g. by means of the
.BINDPASCAL command.

N.B.

The file parameters denoted <text>, <input>, <binary>, <comf>, <m6nf>
and <pmdf> above must already exist when they are used in a (BIND)PASCAL
command. Parameters <listing>, <output>, <save>, <ocf>, <token> and <table>
will be created if they do not already exist. If any of the latter four

already exist they must be direct-access files.

A qualifier consisting of the words "READ", "WRITE" or "APPEND" in
parentheses may be placed after one of these filenames. This is mandatory for
direct-access files and must be "READ" or "WRITE". For basic-peripheral files

only "APPEND" is relevant.

3.2

3.3

3.4

The BINDPASCAL command

The BINDPASCAL macro accepts the same parameters as the PASCAL command,
with the exception of those relating to the compilation of a source text. An
object code file and a run-time monitor must be specified: an executable
program is created by binding these together. Any other actions of the macro
are determined by such additional parameters as are given, these being

interpreted in the same way as by the PASCAL macro.

The OPTION and RUNOPTION parameters

The OPTION parameter allows the compiler's initial settings for the
various compilation options to be varied without the need to insert directives
at the start of the source program. The RUNOPTION parameter similarly allows —
some control over the run-time facilities which are used in any one execution
of an object program. For an understanding of the effects of these optionms,

see sections 2.4 and 2.5.

<0i> ::= <compilation-only option>
| <execution-only option>

<compilation-only option> ::= CHECKS | NOCHECKS
| puMp | NODUMP
} PROFILE | NOPROFILE

RETRO | NORETRO
TRACE | NOTRACE
<address mode>

<address mode> ::= EDM | CDM | DBM | EBM

<execution-only option> ::= RETROMAX=<integer>

| TRACEMIN=<integer>
| TRACEMAX=<integer>

In the absence of a contrary compiler directive or OPTION parameter,
programs are compiled with the option settings CHECKS, DUMP, PROFILE, EDM,
CDM, RETROMAX=50, TRACEMIN=1 and TRACEMAX=2. In the absence of a RUNOPTION
parameter, programs are executed with the option settings applying when

they were compiled.

The FILE and DEVICE parameters

A Pascal program may declare permanent FILE variables to which external
files are to be connected. Under GEORGE 3/4 this is done in two distinct

stages.

3-4

Firstly, a device type and logical unit number are associated with
each of the permanent FILE variables. Default associations are set up by
the compiler (see section 1.6). If it is necessary to change any of these
for a particular execution of the program this can be specified by the
DEVICE parameter. For each file variable to be bound to a new logical
device there must be given (a) its position in the program parameter list
[counting from zerol, (b) the device type and unit number to be used and
(c) optionally, an indication of whether the file is to be opened for read-

only access. The syntax is as follows.

<Ddi> ::= (<file parameter no.>,<device type>,<device no.><flag>)
<file parameter no.> ::= <integer>

<device type> ::= *LP | *CR | *MT | DA

<device no.> ::= <integer>

<flag> ::= , READ | <empty>

Secondly, the file which the logical device will access must be
specified before each execution. This may be an entrant in the filestore,
data held in the job deck itself, or results to be printed in the job
monitoring output. The FILE parameter connects the logical devices of a
program with the files to be accessed by giving a series of equations between

the logical device names and the corresponding actual files.

<Fi> ::= <logical device>=<actual file>
<logical device> ::= <device type><device no.>

<actual file> ::= <GEORGE 3/4 entrant description>

The standard file variable INPUT on logical device *CRO may be
specified by an INPUT parameter instead of a FILE parameter. This makes
available a data concatenation facility which is not possible if *CRO is
specified by the FILE parameter. Similarly the standard file variable OUTPUT
on logical device *LPO can be specified by the OUTPUT parameter. When the
FILE parameter and the { INPUT | OUTPUT } parameter conflict, the FILE

parameter takes precedence.

Note that the actual file description must include a (WRITE)
qualifier if the corresponding logical device is of direct-access type and
has not been limited to read-only opening by the DEVICE parameter. (This

applies even if the program never writes to the file.)

3.5

3.6

Diagnostics from saved programs

The compiler writes two files containing information for use by the
postmortem diagnostic system - the "token" file, which contains a condensed
version of the source text and the '"table'" file, which contains a summarised
symbol table. When the PASCAL macro is called to compile and run a program,
workfiles are used to pass this data to the postmortem program. However,
if it is desired to obtain diagnostics from a binary program created by the
SAVE parameter, then the contents of these files must be retained. The
TOKEN and TABLE parameters are provided to allow the user to nominate
permanent files in place of the default workfiles. The "table" file need
be kept only if symbolic dumps are wanted, the "token" file is needed for

profiles, retrospective tracing and forward tracing.

Machine code dumps

The (PRE)DUMP parameter is provided to enable the object program to
be examined. PREDUMP takes effect before the program is run and DUMP
afterwards. Otherwise they are identical. They may be used together for
"before and after" comparison. When a single area is to be dumped the

parameter has the form:-
(PRE)DUMP=(<area>)
and several areas can be dumped by the form:-
(PRE)DUMP=(<area 1>, ... , <area N>)
where:-
<area i> ::= <first>(<number>) | (<first>,<last>)
Here <first> and <last> are addresses and <number> is the size of the area

to be dumped.

Dumps are printed in the job monitoring file and they should be used
sparingly. The rigorous run-time security and the postmortem symbolic
diagnostics of 1900 Standard Pascal make machine code dumps unnecessary in

all but the very direst of circumstances. (See section 3.3).

3-6

3.7

Use of PASCAL command, simple examples

PASCAL

Compile and, if no compilation errors, run a PASCAL program. Source
and data are read from cards, listing and results are sent to the line-
printer. Default OPTIONS apply i.e. checks are incorporated into the object

code, a postmortem dump, profile and traces are provided if the program fails.

PASCAL TEXT=FILEl,INPUT=FILE2,SAVE=BINFILE

The source in FILEl is compiled. If there are no compilation errors,
the binary program is saved in BINFILE and then run, data being read from
FILE2. Listing and results are sent to the lineprinter. Default OPTIONS
apply.

PASCAL BINARY=BINFILE,INPUT=FILE3,TIME=20,CORE=20000

The binary program in BINFILE is loaded and run. It is allowed
20000 words of core (instead of default 49152) and 20 secs of mill time
(default 10). Data is read from FILE3 and the results sent to the line-
printer. The OPTIONS invoked at compile time now apply.

3-7

1800 PASCAL System Mk 2 Issue 3 September 1977

The 1900 PASCAL system is supplied as a binary compiler program,
#PASQ, and a binary post-mortem generated #POST.

Compiling a PASCAL program

#PASQ should be loaded and the compilation options chosen should be
indicated by setting switch word 30 as follows

switch 23

oz - suppresses runtime error checks

off = generates runtime error checks

switch 22

on - generates compact data mode program (CDM or 15AM)
off - generates extended data mode program (EDM or 22AM)

switch 21

on - generates extended branch mode program (EBM)

off - generates direct branch mode program (DBH)

switch 20

on - suppresses runtime symbolic dumps
off - allows runtime symbolic dumps

switch 19

on - suppresses execution profiling

off - allows execution profiling
switch 18

on - allows retrospective tracing

off - suppresses retrospective tracing
switch 17

on - allows forward tracing

off - suppresses forward tracing)
switch 16

on - suppresses source listing

off - allows source listing

These settings have been chosen so that an all-zero switch word gives

what is thought to be the most desirable combination of options, i.e. CHECKS,
DUMP and PROFILE.

QPASQ should be entered by :--
GO #PASQ 20
Since #PASQ is itself a PASCAL program with heading :-
program PASQ (INPUT,OUTPUT,CODEFILE,OBJECTFILE,TOKENFILE)

it will expect to read the source text from *CRO, to output the listing to *LPO
and to output the object program to CODEFILE. The object table is output to
OBJECTFILE and the stripped source text to TOKENFILE. OBJECTFILE and TOKENFILE
are used by the postmortem diagnostic system. They must be supplied, even if -

all diagnostic options are suppressed. CODEFILE, OBJECTFILE and TOKENFILE are
21l direct-access files, opened as *DAO, *DAl and *DA2. ’

Compilation should terminate in one of two ways

(i) #PASQ HALTED := CC

- This indicates that compilation has been completed successfully and
that a loadable object code program has been written to CODEFILE.

{(ii) #PASQ HALTED :« CE

This indicates that compilation has been completed with one or more
errors having been found in the source program. A loadable object
code program is not produced in this case.

Any other termination represents a failure of compilation for one of
two reasons, either

(a) insufficient working storage is available for compilation to
continue, or

(b) a previously undetected error ir the compiler has occurred.

Case (a) will normally be indicated by a PASCAL error halt of the form

#PASQ HALTED :- ERROR 307 AT

In this case compilation may be re-attempted with an increased storage limit.
‘In all other cases the compiler failure should be reported to the authors with
a listing of the source program which caused it.

Loading a PASCAL program

To produce a loaded executable program from the code file generated by
compilation the compiler #PASQ is (re-)entered as follows

Ge #PASQ 21
This will open the direct access file CODEFILE (as DAO), read down the
object code to form a loaded executable program, change its execution mode to

that requested for the object program, change its name to the first four
characters of that used in the source program heading, and halt :

#nnnn HALTED :- LD

The program #nnnn is then suitable for execution as described in 3 below, or

for saving as a standard ICL format binary program.

If the code file has a name other than CODEFILE, the name may be changed
in the loader by altering words

-~ 186 ,787 ,T88 to the new name.
Loading may halt prematurely for one of three reasons

(i) #PASQ HALTED :- NF

in this case the loader has failed to open the required direct
access file CODEFILE

(ii) #PASQ HALTED :- IC

in this case insufficient core is available for the object program
to be loaded. If additional core can be made available loading
can be restarted by GO #PASQ

(iii) #PASQ HALTED :- UP

in this case an unclearable parity has occurred in reading the
object code from the code file.

>3.

Executing a PASCAL program

When loaded a binary program produced as described in 1 and 2 should be
entered by

GO #nnnn 20

The executing program may halt with one of the following messages

(i) #nnnn HALTED :- OK

in this case execution has terminated by reaching the end of the
main program block.

(ii) #onmm HALTED :- xoom¢xX...

in this case execution has terminated by executing a call to the
procedure halt of the form

halt ('soocoxxx...')

(iii) #nnnn HALTED :- ERRGR eee AT ppppp

in this case execution has terminated on the detection of error eee

at program location ppppp, as explained in the 1900 PASCAL user
guide.

Obtaining post-mortem diagnostic information

If diagnostic options have been specified during its compilation,
execution of a binary 1900 Pascal program will open an additional direct access

file PASQDIAGFILE as DA63, in which diagnostic information is accumulated during
execution.
Failure to open this file is indicated by a halt

#nonnn HALTED :- ND

When execution terminates as described in section 3 the HALTED message
will be preceded by a DISPLAY message of five characters indicating the
postmortem diagnostic options in effect and the status of the program on

termination. These five characters are independently significant, as follows:-
(1) D if a post-mortem dump is available, otherwise X
(2) P if a profile is available, otherwise X

(3) R if retrospective tracing is available, otherwise X

5.

(4) T if forward tracing is available, otherwise X
(5) E if a runtime error has been detected, otherwise X
If execution is interrupted for any other reason the proper writing of

the diagnostics file, and an appropriate halt message, can be obtained by
re-entering the object program by

GO #nnnn 29
after altering register 3 to the most appropriate of the error codes 40l .. 405
given in section 2.3 of the User Guide.
To obtain the post-mortem information specified the post-mortem generator
#PCST sbould be loaded and entered by
GB #P6ST 20
The generator program will open the OBJECTFILE and TOKENFILE written at
compile time, and the diagnostic file PASQDIAGFILE written at runtime, as

*DAO, *DAl and *DA2 respectively. The diagnostic information required will

then be output on lineprinter *LPO as described in the User Guide.

Core allocation in the 13900 PASCAL system

Both #PASQ itself and the object programs which it generates are designed
to operate in a controlled storage environment. In the binary version of
#PASQ supplied and in the binary programs produced by it, the core store request
word of the request block is set to the minimum required to accommodate the
static binary program. When entered the binary program automatically attempts
to extend its core store allocation to a standard working limit (for compact
data mode programs this limit is 32K, otherwise it is 256K). The program then

proceeds as far as possible with the store allocation so obtained, whether it

" is that requested or less.

The standard working limit may be reset before entering the binary

program by altering the contents of word /#C to the new limit value,
e.g. by a directive to EXEC

AL #nnnn limit

This applies equally to #PASQ and its generated programs.

6.

File mapping

As described in the 1900 PASCAL User Guide, the 1900 PASCAL system adopts

a standard mapping for the external files of a PASCAL program onto corresponding
physical devices, as follows

(i) the standard file INPUT is implemented as a card reader CRO
(ii) the standard file OUTPUT is implemented as a line printer LPO

(iii) all other external files are implemented as direct access files
with the same name as the file variable, opened in read/write
mode as DAn where the device unit numbers n are allocated as
0,1,2,.. in the order of occurrence of the file names in the
vrogram heading. (These files must already have been created).

For most users in, say, a George filestore environment a simple re-mapping
of these physical files at George level will meet all their needs. Some users
may however require more precise control over the mapping. This is made possible
within the 1900 PASCAL system in the following way.

For each external file named in the program heading the compiler

generates a device record in the first available locations of the object program,

i.e. those starting at the object address listed on the program heading line.

Each device record consists of 6 words whose contents determine the corresponding
physical device used, as follows

word O determines the opening mode as follows

0 ="read only
1 = write only
2 = read/write

word 1 determines the device unit number to be used 0,1,2, etc.

word 2 determines the device type to be used

0 =1LP
l1=CR
2 = MT
3 = DA

(these are the only device types allowed)

words 3,4,5 determine the filename to be used when appropriate.

By altering any or all of these device record locations before execution
commences, the physical devices used by the program can be controlled. Card

readers and line printers can only be used for external text files.

6.

Representation of files

The representation of files used on magnetic tape or direct access media
is peculiar to the 1900 PASCAL system and not designed to be compatible with
other 1900 software. Details of the representation used can be obtained from
the listings of the corresponding support routines within the loaders. Text
files which are to be processed by non-PASCAL software must therefore be

manipulated as card-reader or line-printer files.

An input card-reader file is assumed to be terminated by a card with
asterisis (*a#x) punchéd in columns 1-4%. Variation of this end-of-file marker
can be achieved by altering location /4/ of the object program to hold the
feur—character marker required.

The source library enhancement

The source library enhancement is supplied as a George edit for the
original Pascal compiler source. The edited compiler source should be compiled

{as an EBM program) to produce a binary compiler which implements the library
mechanism.

The resultant compiler has the same cperational characteristics as the
original #PASQ compiler except that the source to be compiled is read using a
George file reader *FRO, which should therefore be assigned to the appropriate
input file before the compiler is entered. Thereafter the compiler dynamically
issues George commands to assign further file readers *FR1, *FR2, etc.

according to the depth of nesting of retrieval commands which it encounters.

The compiler assumes that 'public' library files are held under a pre-
determined user identity code. The code used is determined by the string
assignment which is the first action of the procedure ATTACHFILE inserted by
the edit supplied. The code may therefore be varied by first editing this
string assigmment. All public library files must have traps set to allow read
access to all users entitled to retrieve them.

